Technical Document

Appliance - Split type air conditioner

Directive 2009/125/EC

kW

Pdc

11.63

Supplier	Carrier
Outdoor unit	38WHSM042A1A0TEE
Indoor unit 1	40WHMW042D1A0TEE
Capacity control	Variable

Cooling

Tj = 20°C

Design load		Pdesignc		kW		4.2
Seasonal efficiency		SEER				7.00
Seasonal electricity consumption (*)	Qce kWh/annum					210
Degradation co-efficient cooling		Cdc				-
÷ 0						
Declared capacity for cooling, at indoor ter temperature Tj	nperature 27(19) °C ar	nd outdoor	Declared energy efficiency temperature Tj	ratio, at indoor temperatur	e 27(19) °C a	and outdoor
Declared capacity for cooling, at indoor ter	nperature 27(19) °C ar Pdc kW	nd outdoor 4.20			e 27(19) °C a dc kW	and outdoor 3.31
Declared capacity for cooling, at indoor ter temperature Tj			temperature Tj	F		

Tj = 20°C

Heating		Average climate	Colder climate	Warmer climate
Design load	Pdesignh kW	3.6	-	1.9
Seasonal efficiency	SCOP	4.60	-	5.60
Seasonal electricity consumption (*)	Qhe kWh/annum	1095	-	479
Bivalent temperature	°C	-7.0	-15.0	2.0
Operation limit temperature	°C	-15.0	-15.0	-15.0
Degradation co-efficient heating	Cdh	-		

Average climate

Declared capacity for heating/Average season, at indoor temperature 20 $^\circ\text{C}$ and outdoor temperature Tj

Pdc

kW

1.20

Tj = -7 °C	Pdh	kW	3.18
Tj = +2 °C	Pdh	kW	1.94
Tj = +7 °C	Pdh	kW	1.25
Tj = +12 °C	Pdh	kW	1.00
Tj = bivalent temperature	Pdh	kW	3.18
Tj = operation limit temperature	Pdh	kW	2.30

Declared coefficient of performance/Average season, at indoor temperature 20 $^\circ\text{C}$ and outdoor temperature Tj

Tj = -7 °C	Pdh	kW	2.80
Tj = +2 °C	Pdh	kW	4.70
Tj = +7 °C	Pdh	kW	6.15
Tj = +12 °C	Pdh	kW	6.70
Tj = bivalent temperature	Pdh	kW	2.80
Tj = operation limit temperature	Pdh	kW	2.40

Electricity

Back up heating capacity				kW	0.750	-			0.000
thermostat-off mode	Pto	kW	0.039		Crankcase heater mode		Pck	kW	0.000
off mode	Poff	kW	0.001		standby mode		Psb	kW	0.001

Declared capacity for heating, at indoor temperature 20°C and outdoor temperature Tj.

Tj = -7 °C	Pdh	kW	3.18	-	-
Tj = +2 °C	Pdh	kW	1.94	-	1.90
Tj = +7 °C	Pdh	kW	1.25	-	1.22
Tj = +12 °C	Pdh	kW	1.00	-	1.00
Tj = bivalent temperature	Pdh	kW	3.18	-	1.90
Tj = operation limit temperature	Pdh	kW	2.30	-	2.30

(*) Based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located

Refrigerant

Туре		R32
Global Warming Potential	GWP kgCO2eq	675

Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional

Sound power level			Cooling	Heating
Outdoor unit	dB		63	64
Indoor unit 40WHMW042D1A0TEE	dB		56	56
Rated air flow			Cooling	Heating
Outdoor unit	m3/h		2160	2160
Indoor unit 40WHMW042D1A0TEE	m3/h		750	760
Dimensions	Height	Width	Depth	Weight (kg)
Outdoor unit	m3/h		2160	2160
Indoor unit 40WHMW042D1A0TEE	m3/h		750	760

Harmonised standard EN14511:2007, EN12102

Calculation methods - Measurement standards EN14511:2007, EN12102

Contact details

RIELLO Spa Via Ing. Pilade Riello, 7 - 37045 Legnago (VR), Italy